1

1.0 Introduction
Magnetic levitation (maglev) is a highly advanced technology. It is used in the various cases, including clean energy (small and huge wind turbines: at home, office, industry, etc.), building facilities (fan), transportation systems (magnetically levitated train, Personal Rapid Transit (PRT), etc.), weapon (gun, rocketry), nuclear engineering (the centrifuge of nuclear reactor), civil engineering (elevator), advertising (levitating everything considered inside or above various frames can be selected), toys (train, levitating spacemen over the space ship, etc.), stationery (pen) and so on. The common point in all these applications is the lack of contact and thus no wear and friction. This increases efficiency, reduce maintenance costs and increase the useful life of the system. The magnetic levitation technology can be used as a highly advanced and efficient technology in the various industrial. There are already many countries that are attracted to maglev systems.
Among above-cited beneficial usages, the most crucial utilization of magnetic levitation is in operation of magnetically levitated trains. Magnetically levitated trains are certainly the maximum superior motors presently to be had to railway industries. Maglev is the first essential innovation within the area of railroad generation because the invention of the railroad. Magnetically levitated train is a highly modern vehicle. Maglev vehicles use noncontact magnetic levitation, guidance and propulsion systems and have no wheels, axles and transmission. Contrary to traditional railroad vehicles, there is no direct physical contact between maglev vehicle and its guide way. These vehicles move along magnetic fields that are established between the vehicle and its guide way. Conditions of no mechanical contact and no friction provided by such technology makes it feasible to reach higher speeds of travel attributed to such trains. Manned maglev vehicles have recorded speed of travel equal to 581km/hr. The replacement of mechanical components by wear-free electronics overcomes the technical restrictions of wheel-on-rail technology. Application of magnetically levitated trains has attracted numerous transportation industries throughout the world. Magnetically levitated trains are the most recent advancement in railway engineering specifically in transportation industries. Maglev trains can be conveniently considered as a solution for transportation needs of the current time as well as future needs of the world. There is variety of designs for maglev systems and engineers keep revealing new ideas about such systems. Many systems have been proposed in different parts of the worlds, and a number of corridors have been selected and researched.1
Rapid growth of populations and the never ending demand to increase the speed of travel has always been a dilemma for city planners. The future is already here. Rapid transit and high-speed trains have always been thought of and are already in use. This is the way further into the future. Trains with magnetic levitations are part of the game. Conventional railway systems have been modified to make them travel at much higher speeds. Also, variety of technologies including magnetic levitation systems and high-speed railway (HSR) systems has been introduced. Rapid development of transportation industries worldwide, including railroads and the never ending demand to shorten travel time during trade, leisure, etc. have caused planning and implementation of high-speed railroads in many countries. Variety of such systems including maglev has been introduced to the industry. Maglev trains are a necessity for modern time transportation needs and vital for the future needs of railways, worldwide. This has resulted in the development of a variety of maglev systems that are manufactured by different countries. Maglev systems currently in use have comparable differences. The current models are also changing and improving.
Industries have to grow in order to facilitate many aspects of modern day life. This comes with a price to pay for by all members of societies. Industrial developments and widespread use of machineries have also increased risks of financial damages and loss of lives. Safety and needs to physically protect people against machineries may have not been a priority in the past but they are necessities of modern times. Experts of industries have the task of solving safety and protection issues before implementing machineries. This is a step with high priority for all industrial assignments. While being fast, reliable and comfortable, maglev systems have found special places in minds of people. Running at such high speeds, maglev systems have to be safe and need to be renown for safety. This puts much heavier loads on the shoulders of the corresponding experts and managers, compared to some other means of transportation. Safety is knowingly acting with proper functions to provide comfort and reduce dangers, as much as possible. Risk management techniques have a vital role in organizing and implementing proper acts during incidents, accidents or mishaps in maglev systems operations. Effective management has a specific place in such processes. Obviously, such plannings put considerable financial load on the system. Implementation of internationally accepted standards is a fundamental step toward uplifting track safety. It will also serve to improve route quality, increase passenger loads and increase speed of travel. Maglev vehicle is one of the important transportation equipment of the urban track traffic system toward the future.
The ordinary plan for research and development and application of maglev generation ought to be made at the country wide stage. This plan shall consist of the improvement plans as to research and improvement of key maglev era, project imposing generation research and improvement of maglev venture, plans of building maglev passage based totally on visitors demands, investment and financing system for the construction and operation of maglev device, research on imposing plans of high-density operational enterprise and protection of maglev route and so on.
It is very important to be vigilant about economical aspects of any major project during its planning and construction phases. Optimal use of local resources must be all accounted for. Technical and economical evaluation of the projects is a necessity to their success. It is necessary to have prior knowledge for investing into a project and then implementing its goals. Good planning makes it feasible to run the projects with reduced risks and increased return for the investment.2
2.0 History
2.1 First Maglev patent
High-speed transportation patents were granted to various inventors throughout the world. Early United States patents for a linear motor propelled train were awarded to German inventor Alfred Zehden. The inventor was awarded U.S. Patent 782,312(14 February 1905) and U.S. Patent RE12,700 (21 August 1907). In 1907, another early electromagnetic transportation system was developed by F. S. Smith.A series of German patents for magnetic levitation trains propelled by linear motors were awarded to Hermann Kemper between 1937 and 1941. An early maglev train was described in U.S. Patent 3,158,765, “Magnetic system of transportation”, by G. R. Polgreen (25 August 1959). The first use of “maglev” in a United States patent was in “Magnetic levitation guidance system”, by Canadian Patents and Development Limited.3

2.2 New York, United States, 1968
In 1968, even as behind schedule in visitors on the Throgs Neck Bridge, James Powell, a researcher at Brookhaven National Laboratory (BNL), notion of the usage of magnetically levitated transportation. Powell and BNL colleague Gordon Danby labored out a MagLev concept the use of static magnets mounted on a transferring car to set off electro dynamic lifting and stabilizing forces in specially shaped loops, together with figure of eight coils on a manual manner.
2.3 Hamburg, Germany, 1979
Transrapid 05 was the first maglev train with long stator propulsion licensed for passenger transportation. In 1979, a 908 m (2,979 ft) track was opened in Hamburg for the first International Transportation Exhibition (IVA 79). Interest was sufficient that operations were extended three months after the exhibition finished, having carried more than 50,000 passengers. It was reassembled in Kassel in 1980.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

2.4 Birmingham, United Kingdom, 1984–95
The world’s first commercial maglev system was a low-speed maglev shuttle that ran between the airport terminal of Birmingham International Airport and the nearby Birmingham International railway station between 1984 and 1995. Its track length was 600 m (2,000 ft), and trains levitated at an altitude of 15 mm (0.59 in), levitated by electromagnets, and propelled with linear induction motors. It operated for 11 years and was initially very popular with passengers, but obsolescence problems with the electronic systems made it progressively unreliable as years passed, leading to its closure in 1995. One of the original cars is now on display at Rail world in Peterborough, together with the RTV31 hover train vehicle. Another is on display at the National Railway Museum in York.
Several favourable conditions existed when the link was built:
• The British Rail Research vehicle was 3 tonnes and extension to the 8 tonne vehicle was easy.
• Electrical power was available.
• The airport and rail buildings were suitable for terminal platforms.
• Only one crossing over a public road was required and no steep gradients were involved.
• Land was owned by the railway or airport.
• Local industries and councils were supportive.
• Some government finance was provided and because of sharing work, the cost per organization was low.
After the system closed in 1995, the original guide way lay dormant14 until 2003, when a replacement cable-hauled system, the Air Rail Link Cable Liner people mover, was opened.

2.5 Emsland, Germany, 1984–2012
Transrapid, a German maglev company, had a test track in Emsland with a total length of 31.5 km (19.6 mi). The single-track line ran between Dörpen and Lathen with turning loops at each end. The trains regularly ran at up to 420 km/h (260 mph). Paying passengers were carried as part of the testing process. The production of the test facility started in 1980 and finished in 1984. In 2006, the Lathen maglev educate coincidence took place killing 23 human beings, found to were resulting from human mistakes in imposing protection checks. From 2006 no passengers were carried. At the end of 2011 the operation licence expired and changed into no longer renewed, and in early 2012 demolition permission turned into given for its centers, such as the song and manufacturing facility.

2.6 Japan, 1969–present
Japan operates two independently developed maglev trains. One is HSST (and its descendant, the Linimo line) by Japan Airlines and the other, which is more wellknown, is SCMaglev by the Central Japan Railway Company.
The development of the latter started in 1969. Miyazaki test track regularly hit 517 km/h (321 mph) by 1979. After an accident that destroyed the train, a new design was selected. In Okazaki, Japan (1987), the SCMaglev took a test ride at the Okazaki exhibition. Tests through the 1980s continued in Miyazaki before transferring to a far larger test track, 20 km (12 mi) long, in Yamanashi in 1997.
Development of HSST started in 1974. In Tsukuba, Japan (1985), the HSST-03 (Linimo) became popular in spite of its 30 km/h (19 mph) at the Tsukuba World Exposition. In Saitama, Japan (1988), the HSST-04-1 was revealed at the Saitama exhibition performed in Kumagaya. Its fastest recorded speed was 300 km/h (190 mph).

2.7 Vancouver, Canada and Hamburg, Germany, 1986–88
In Vancouver, Canada, the HSST-03 by HSST Development Corporation (Japan Airlines and Sumitomo Corporation) was exhibited at Expo 8619 and ran on a 400-metre (0.25 mi) test track that provided guests with a ride in a single car along a short section of track at the fairgrounds. It was removed after the fair and debut at the Aoi Expo in 1987 and now on static display at Okazaki Minami Park. In Hamburg, Germany, the TR-07 was exhibited at the international traffic exhibition (IVA88) in 1988.

2.8 Berlin, Germany, 1989–91
In West Berlin, the M-Bahn was built in the late 1980s. It was a driverless maglev system with a 1.6 km (0.99 mi) track connecting three stations. Testing with passenger traffic started in August 1989, and regular operation started in July 1991. Although the line largely followed a new elevated alignment, it terminated at Gleisdreieck U-Bahn station, where it took over an unused platform for a line that formerly ran to East Berlin. After the fall of the Berlin Wall, plans were set in motion to reconnect this line (today’s U2). Deconstruction of the M-Bahn line began only two months after regular service began.

2.9 South Korea, 1993–present
In 1993, Korea completed the development of its own maglev train, shown off at the Taejon Expo ’93, which was developed further into a full-fledged maglev capable of travelling up to 110 km/h (68 mph) in 2006. This final model was incorporated in the Incheon Airport Maglev which opened on February 3, 2016, making Korea the world’s fourth country to operate its own self-developed maglev after the United Kingdom’s Birmingham International Airport, Germany’s Berlin M-Bahn, and Japan’s Linimo. It links Incheon International Airport to the Yongyu Station and Leisure Complex on Yeongjong island. It offers a transfer to the Seoul Metropolitan Subway at AREX’s Incheon International Airport Station and is offered free of charge to anyone to ride, operating between 9 am and 6 pm with 15 minute intervals. Operating hours are to be raised in the future.
The maglev system was co-developed by the Korea Institute of Machinery and Materials (KIMM) and Hyundai Rotem. It is 6.1 kilometers (3.8 mi) long, with six stations and a 110 km/h (68 mph) operating speed.4

x

Hi!
I'm Dora

Would you like to get a custom essay? How about receiving a customized one?

Check it out
x

Hi!
I'm Barry!

Would you like to get a custom essay? How about receiving a customized one?

Check it out